关键词:
近似马尔科夫毯
Lasso
特征选择
高维小样本
中医药信息
摘要:
在特征选择问题中,近似马尔科夫毯常用于判断冗余特征,但所得到的冗余特征并不完全相同,因此,在直接使用近似马尔科夫毯删除冗余特征时,存在可能导致信息丢失的情况,影响模型精度。为此,提出一种用于中药代谢组学高维小样本数据的融合Lasso的近似马尔科夫毯特征选择方法。方法分为两个阶段,第一阶段,通过最大信息系数对特征的相关度分析过滤无关特征;第二阶段,采用近似马尔科夫毯构建相似特征组,使用Lasso评估相似特征组中特征影响力,迭代去除冗余特征。通过实验对比表明,该算法可以在一定程度上减少有用信息丢失,去除无关特征和冗余特征,提高模型精度和稳定性。