关键词:
基础医学
教学改革
人工智能
大语言模型
BERT
微调
摘要:
在生成式人工智能的推动下,因材施教的个性化学习是现代教育的必然趋势。基于知识图谱的个性化学习路径是目前普遍采用的方式。在知识图谱的构建中,对专业术语的精准提取是最基础的工作,但仅靠人工完成,存在工作量大、易遗漏、不能及时更新的问题。文章通过自行设计标注的数据集medBaseDt,在开源预训练大模型BERT的基础上进行微调,训练完成termBERT模型,并设计开发了基础医学专业术语智能提取系统。该系统在组织学与胚胎学和病理学等教材中进行推理应用,专业术语提取准确率达到94.5±1.16%,取得了非常好的效果。通过该系统,教师能快速获取指定教材内容的专业词汇,快速完成知识图谱的设计。同时,该项技术也为后续研发AI智能构建知识图谱、智能生成试题和个性化学习打下了扎实的基础。