关键词:
高光谱图像分类
分数阶微分
特征提取
卷积神经网络
摘要:
针对高光谱遥感图像的特征提取与地物分类,提出一种基于分数阶微分的高光谱图像特征提取方法,设计二维分数阶微分掩模提取高光谱图像的像素空间分数阶微分(SpaFD)特征,并提出一种空谱联合准则用于选取微分掩模阶数。为充分利用高光谱图像的空间特征与光谱特征,将SpaFD特征与原始特征直连融合获得SpaFD-Spe-Spa混合特征,并采用三维卷积神经网络(3DCNN)、先采用主成分分析(PCA)对像素光谱进行降维处理再送入三维卷积神经网络(3DCNNPCA)以及采用混合光谱网络(HybridSN)验证SpaFD-Spe-Spa混合特征的有效性。实验中分别采用3×3,5×5和7×7的分数阶微分掩模进行空间特征提取,4个真实高光谱图像的实验结果表明,所提取的SpaFD特征和SpaFDSpe-Spa特征可有效提升高光谱图像的地物分类精度,且SpaFD-Spe-Spa特征对地物分类准确率的提升更为明显:SpaFD特征相比原始特征在Indian Pines,Botswana,Pavia University和Salinas 4个数据上的分类识别率在最优情况下分别提升了3.87%,1.42%,2.41%和2.87%;SpaFD-Spe-Spa特征相比原始特征在Indian Pines,Botswana,Pavia University和Salinas 4个数据上的分类识别率在最优情况下分别提升了3.90%,5.62%,3.35%和5.18%。