关键词:
非线性微分方程
脉冲
Leray-Schauder不动点定理
Dirichlet边值问题
摘要:
用Leray-Schauder不动点定理,研究二阶脉冲微分方程Dirichlet边值问题-u″(x)+c(x)u(x)+∑p i=1 c iδ(x-x i)u(x)=h(x,u(x))+∑q j=1 h jδ(x-y j),x∈(0,1),u(0)=u(1)=0解的存在性,其中:c∈C([0,1],ℝ),h∈C([0,1]×ℝ,ℝ),c i,h j∈ℝ,i=1,2,…,p,j=1,2,…,q;p,q∈N;Diracδ-函数为当x≠0时,δ(x)=0,δ(0)=+∞,∫+∞-∞δ(x)d x=1;点0